Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Virulence ; 14(1): 2239519, 2023 12.
Article En | MEDLINE | ID: mdl-37563831

Streptococcus sanguinis is a ubiquitous commensal species of the oral cavity commonly involved as an opportunistic pathogen in cardiovascular infections. In this study, we investigated the functions of endopeptidase O (PepO) and a C3-degrading protease (CppA) in the systemic virulence of S. sanguinis. Isogenic mutants of pepO and cppA obtained in strain SK36 showed increased susceptibility to C3b deposition and to opsonophagocytosis by human polymorphonuclear neutrophils (PMN). These mutants differ, however, in their profiles of binding to serum amyloid P component (SAP) and C1q, whereas both showed reduced interaction with C4b-binding protein (C4BP) and/or factor H (FH) regulators as compared to SK36. The two mutants showed defects in ex vivo persistence in human blood, serum-mediated invasion of HCAEC endothelial cells, and virulence in a Galleria mellonella infection model. The transcriptional activities of pepO and cppA, assessed by RT-qPCR in nine wild-type strains, further indicated strain-specific profiles of pepO/cppA expression. Moreover, non-conserved amino acid substitutions were detected among the strains, mostly in CppA. Phylogenetic comparisons with homologues of streptococcal species of the oral and oropharyngeal sites suggested that S. sanguinis PepO and CppA have independent ancestralities. Thus, this study showed that PepO and CppA are complement evasion proteins expressed by S. sanguinis in a strain-specific manner, which are required for multiple functions associated with cardiovascular virulence.


Endothelial Cells , Streptococcus sanguis , Humans , Streptococcus sanguis/genetics , Streptococcus sanguis/metabolism , Virulence , Endothelial Cells/metabolism , Phylogeny , Complement System Proteins , Bacterial Proteins/metabolism
2.
Front Microbiol ; 13: 875581, 2022.
Article En | MEDLINE | ID: mdl-35509310

Streptococcus sanguinis is a pioneer commensal species of dental biofilms, abundant in different oral sites and commonly associated with opportunist cardiovascular infections. In this study, we addressed intra-species functional diversity to better understand the S. sanguinis commensal and pathogenic lifestyles. Multiple phenotypes were screened in nine strains isolated from dental biofilms or from the bloodstream to identify conserved and strain-specific functions involved in biofilm formation and/or persistence in oral and cardiovascular tissues. Strain phenotypes of biofilm maturation were independent of biofilm initiation phenotypes, and significantly influenced by human saliva and by aggregation mediated by sucrose-derived exopolysaccharides (EPS). The production of H2O2 was conserved in most strains, and consistent with variations in extracellular DNA (eDNA) production observed in few strains. The diversity in complement C3b deposition correlated with the rates of opsonophagocytosis by human PMN and was influenced by culture medium and sucrose-derived EPS in a strain-specific fashion. Differences in C3b deposition correlated with strain binding to recognition proteins of the classical pathway, C1q and serum amyloid protein (SAP). Importantly, differences in strain invasiveness into primary human coronary artery endothelial cells (HCAEC) were significantly associated with C3b binding, and in a lesser extent, with binding to host glycoproteins (such as fibrinogen, plasminogen, fibronectin, and collagen). Thus, by identifying conserved and strain-specific phenotypes involved in host persistence and systemic virulence, this study indicates potential new functions involved in systemic virulence and highlights the need of including a wider panel of strains in molecular studies to understand S. sanguinis biology.

3.
PLoS One ; 15(12): e0242960, 2020.
Article En | MEDLINE | ID: mdl-33270690

The pathophysiological mechanisms underlying chronic thromboembolic pulmonary hypertension (CTEPH) are still unclear. Endothelial cell (EC) remodeling is believed to contribute to this pulmonary disease triggered by thrombus and hemodynamic forces disbalance. Recently, we showed that HSP70 levels decrease by proatherogenic shear stress. Molecular chaperones play a major role in proteostasis in neurological, cancer and inflammatory/ infectious diseases. To shed light on microvascular responses in CTEPH, we characterized the expression of molecular chaperones and annexin A2, a component of the fibrinolytic system. There is no animal model that reproduces microvascular changes in CTEPH, and this fact led us to isolated endothelial cells from patients with CTEPH undergoing pulmonary endarterectomy (PEA). We exposed CTEPH-EC and control human pulmonary endothelial cells (HPAEC) to high- (15 dynes/cm2) or low- (5 dynes/cm2) shear stress. After high-magnitude shear stress HPAEC upregulated heat shock protein 70kDa (HSP70) and the HSP ER paralogs 78 and 94kDa glucose-regulated protein (GRP78 and 94), whereas CTEPH-ECs failed to exhibit this response. At static conditions, both HSP70 and HSP90 families in CTEPH-EC are decreased. Importantly, immunohistochemistry analysis showed that HSP70 expression was downregulated in vivo, and annexin A2 was upregulated. Interestingly, wound healing and angiogenesis assays revealed that HSP70 inhibition with VER-155008 further impaired CTEPH-EC migratory responses. These results implicate HSP70 as a novel master regulator of endothelial dysfunction in type 4 PH. Overall, we first show that global failure of HSP upregulation is a hallmark of CTEPH pathogenesis and propose HSP70 as a potential biomarker of this condition.


Endothelial Cells/pathology , HSP70 Heat-Shock Proteins/metabolism , Hypertension, Pulmonary/pathology , Pulmonary Artery/pathology , Stress, Mechanical , Thromboembolism/complications , Up-Regulation , Biomechanical Phenomena , Chronic Disease , Endoplasmic Reticulum Chaperone BiP , Humans , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/metabolism , Shear Strength
4.
Molecules ; 24(18)2019 Sep 06.
Article En | MEDLINE | ID: mdl-31489892

Vascular smooth muscle cells (VSMCs) loaded with lipid droplets (LDs) are markers of atherosclerosis. In this disease, inflammatory Group IIA-secreted phospholipase A2s (GIIA sPLA2s) are highly expressed in VSMCs, but their actions in these cells are unknown. Here, we investigated the ability of myotoxin III (MT-III), an ophidian GIIA sPLA2 sharing structural and functional features with mammalian GIIA sPLA2s, to induce LD formation and lipid metabolism factors involved in this effect. Modulation of VSMC phenotypes by this sPLA2 was also evaluated. Incubation of VSMCs with MT-III significantly increased the number of LDs. MT-III upregulated scavenger receptor type 1 (SR-A1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) protein expression and enhanced acetylated-low density lipoprotein (acLDL) uptake by VSMCs, revealing the ability of a GIIA PLA2 to modulate scavenger receptor activities. MT-III induced translocation and protein expression of PPAR-γ and -ß/δ. Inhibition of peroxisome proliferator-activated receptors (PPARs) and diacylglycerol O-acyltransferase (DGAT) and acyl-CoA:cholesterolacyltransferase (ACAT) enzymes abrogated MT-III-induced LD formation. Moreover, in response to MT-III, VSMCs acquired phagocytic activity and expressed macrophage markers CD68 and MAC-2. In conclusion, MT-III is able to stimulate VSMCs and recruit factors involved in lipid uptake and metabolism, leading to the formation of VSMC-derived foam cells with acquisition of macrophage-like markers and functions.


Cell Transdifferentiation/drug effects , Foam Cells/cytology , Group II Phospholipases A2/pharmacology , Muscle, Smooth, Vascular/cytology , Animals , Cells, Cultured , Gene Expression Regulation/drug effects , Lipid Metabolism/drug effects , Lipoproteins, LDL/metabolism , Male , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Phenotype , Rats , Scavenger Receptors, Class A/metabolism , Scavenger Receptors, Class E/metabolism
5.
Cell Stress Chaperones ; 24(1): 273-282, 2019 01.
Article En | MEDLINE | ID: mdl-30645756

Heat shock protein-70 (HSP70) is crucial for proteostasis and displays cell-protective effects. Meanwhile, enhanced levels of cell-surface (cs) and secreted HSP70 paradoxically associate with pathologic cardiovascular conditions. However, mechanisms regulating csHSP70 pool are unknown. We hypothesized that total and csHSP70 expressions are modulated by hemodynamic forces, major contributors to endothelial pathophysiology. We also investigated whether thrombomodulin, a crucial thromboresistance cell-surface protein, is a csHSP70 target. We used proteomic/western analysis, confocal microscopy, and cs-biotinylation to analyze the pattern and specific characteristics of intracellular and csHSP70. HSP70 interaction with thrombomodulin was investigated by confocal colocalization, en face immunofluorescence, proximity assay, and immunoprecipitation. Thrombomodulin activity was assessed by measured protein C activation two-step assay. Our results show that csHSP70 pool in endothelial cells (EC) exhibits a peculiar cluster-like pattern and undergoes enhanced expression by physiological arterial-level laminar shear stress. Conversely, total and csHSP70 expressions were diminished under low shear stress, a known proatherogenic hemodynamic pattern. Furthermore, total HSP70 levels were decreased in aortic arch (associated with proatherogenic turbulent flow) compared with thoracic aorta (associated with atheroprotective laminar flow). Importantly, csHSP70 co-localized with thrombomodulin in cultured EC and aorta endothelium; proximity ligation assays and immunoprecipitation confirmed their physical interaction in EC. Remarkably, immunoneutralization of csHSP70 enhanced thrombomodulin activity in EC and aorta ex vivo. Overall, proatherogenic hemodynamic forces promote reduced total HSP70 expression, which might implicate in disturbed proteostasis; meanwhile, the associated decrease in cs-HSP70 pool associates with thromboresistance signaling. Cell-surface HSP70 (csHSP70) expression regulation and csHSP70 targets in vascular cells are unknown. We showed that HSP70 levels are shear stress-modulated and decreased under proatherogenic conditions. Remarkably, csHSP70 binds thrombomodulin and inhibits its activity in endothelial cells. This mechanism can potentially explain some deleterious effects previously associated with high extracellular HSP70 levels, as csHSP70 potentially could restrict thromboresistance and support thrombosis/inflammation in stress situations.


Cell Membrane/metabolism , HSP70 Heat-Shock Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Thrombomodulin/metabolism , Aorta/metabolism , Humans , Protein Binding , Stress, Physiological
6.
Am J Physiol Heart Circ Physiol ; 316(3): H566-H579, 2019 03 01.
Article En | MEDLINE | ID: mdl-30499716

Although redox processes closely interplay with mechanoresponses to control vascular remodeling, redox pathways coupling mechanostimulation to cellular cytoskeletal organization remain unclear. The peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) supports postinjury vessel remodeling. Using distinct models, we investigated whether pecPDIA1 could work as a redox-dependent organizer of cytoskeletal mechanoresponses. In vascular smooth muscle cells (VSMCs), pecPDIA1 immunoneutralization impaired stress fiber assembly in response to equibiaxial stretch and, under uniaxial stretch, significantly perturbed cell repositioning perpendicularly to stretch orientation. During cyclic stretch, pecPDIA1 supported thiol oxidation of the known mechanosensor ß1-integrin and promoted polarized compartmentalization of sulfenylated proteins. Using traction force microscopy, we showed that pecPDIA1 organizes intracellular force distribution. The net contractile moment ratio of platelet-derived growth factor-exposed to basal VSMCs decreased from 0.90 ± 0.09 (IgG-exposed controls) to 0.70 ± 0.08 after pecPDI neutralization ( P < 0.05), together with an enhanced coefficient of variation for distribution of force modules, suggesting increased noise. Moreover, in a single cell model, pecPDIA1 neutralization impaired migration persistence without affecting total distance or velocity, whereas siRNA-mediated total PDIA1 silencing disabled all such variables of VSMC migration. Neither expression nor total activity of the master mechanotransmitter/regulator RhoA was affected by pecPDIA1 neutralization. However, cyclic stretch-induced focal distribution of membrane-bound RhoA was disrupted by pecPDI inhibition, which promoted a nonpolarized pattern of RhoA/caveolin-3 cluster colocalization. Accordingly, FRET biosensors showed that pecPDIA1 supports localized RhoA activity at cell protrusions versus perinuclear regions. Thus, pecPDI acts as a thiol redox-dependent organizer and noise reducer mechanism of cytoskeletal repositioning, oxidant generation, and localized RhoA activation during a variety of VSMC mechanoresponses. NEW & NOTEWORTHY Effects of a peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) during mechanoregulation in vascular smooth muscle cells (VSMCs) were highlighted using approaches such as equibiaxial and uniaxial stretch, random single cell migration, and traction force microscopy. pecPDIA1 regulates organization of the cytoskeleton and minimizes the noise of cell alignment, migration directionality, and persistence. pecPDIA1 mechanisms involve redox control of ß1-integrin and localized RhoA activation. pecPDIA1 acts as a novel organizer of mechanoadaptation responses in VSMCs.


Adaptation, Physiological/physiology , Cytoskeleton/physiology , Myocytes, Smooth Muscle/physiology , Protein Disulfide-Isomerases/physiology , Actin Cytoskeleton/physiology , Animals , Biomechanical Phenomena , Cell Movement , Cells, Cultured , Gene Silencing , Integrin beta1/metabolism , Muscle, Smooth, Vascular/metabolism , Oxidants/metabolism , Pressoreceptors , Protein Disulfide-Isomerases/genetics , Rabbits , rhoA GTP-Binding Protein/metabolism
7.
Molecules, v. 24, p. 18, n. 3244, sep. 2019
Article En | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-2859

Vascular smooth muscle cells (VSMCs) loaded with lipid droplets (LDs) are markers of atherosclerosis. In this disease, inflammatory Group IIA-secreted phospholipase A2s (GIIA sPLA2s) are highly expressed in VSMCs, but their actions in these cells are unknown. Here, we investigated the ability of myotoxin III (MT-III), an ophidian GIIA sPLA2 sharing structural and functional features with mammalian GIIA sPLA2s, to induce LD formation and lipid metabolism factors involved in this effect. Modulation of VSMC phenotypes by this sPLA2 was also evaluated. Incubation of VSMCs with MT-III significantly increased the number of LDs. MT-III upregulated scavenger receptor type 1 (SR-A1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) protein expression and enhanced acetylated-low density lipoprotein (acLDL) uptake by VSMCs, revealing the ability of a GIIA PLA2 to modulate scavenger receptor activities. MT-III induced translocation and protein expression of PPAR-gama and -ß/d. Inhibition of peroxisome proliferator-activated receptors (PPARs) and diacylglycerol O-acyltransferase (DGAT) and acyl-CoA:cholesterolacyltransferase (ACAT) enzymes abrogated MT-III-induced LD formation. Moreover, in response to MT-III, VSMCs acquired phagocytic activity and expressed macrophage markers CD68 and MAC-2. In conclusion, MT-III is able to stimulate VSMCs and recruit factors involved in lipid uptake and metabolism, leading to the formation of VSMC-derived foam cells with acquisition of macrophage-like markers and functions.

8.
Molecules ; 24(18): 3244, 2019.
Article En | SES-SP, SESSP-IBPROD, SES-SP | ID: but-ib17246

Vascular smooth muscle cells (VSMCs) loaded with lipid droplets (LDs) are markers of atherosclerosis. In this disease, inflammatory Group IIA-secreted phospholipase A2s (GIIA sPLA2s) are highly expressed in VSMCs, but their actions in these cells are unknown. Here, we investigated the ability of myotoxin III (MT-III), an ophidian GIIA sPLA2 sharing structural and functional features with mammalian GIIA sPLA2s, to induce LD formation and lipid metabolism factors involved in this effect. Modulation of VSMC phenotypes by this sPLA2 was also evaluated. Incubation of VSMCs with MT-III significantly increased the number of LDs. MT-III upregulated scavenger receptor type 1 (SR-A1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) protein expression and enhanced acetylated-low density lipoprotein (acLDL) uptake by VSMCs, revealing the ability of a GIIA PLA2 to modulate scavenger receptor activities. MT-III induced translocation and protein expression of PPAR-gama and -ß/d. Inhibition of peroxisome proliferator-activated receptors (PPARs) and diacylglycerol O-acyltransferase (DGAT) and acyl-CoA:cholesterolacyltransferase (ACAT) enzymes abrogated MT-III-induced LD formation. Moreover, in response to MT-III, VSMCs acquired phagocytic activity and expressed macrophage markers CD68 and MAC-2. In conclusion, MT-III is able to stimulate VSMCs and recruit factors involved in lipid uptake and metabolism, leading to the formation of VSMC-derived foam cells with acquisition of macrophage-like markers and functions.

9.
Nat Rev Cancer ; 18(9): 562-575, 2018 09.
Article En | MEDLINE | ID: mdl-29795326

In this Opinion article, we aim to address how cells adapt to stress and the repercussions chronic stress has on cellular function. We consider acute and chronic stress-induced changes at the cellular level, with a focus on a regulator of cellular stress, the chaperome, which is a protein assembly that encompasses molecular chaperones, co-chaperones and other co-factors. We discuss how the chaperome takes on distinct functions under conditions of stress that are executed in ways that differ from the one-on-one cyclic, dynamic functions exhibited by distinct molecular chaperones. We argue that through the formation of multimeric stable chaperome complexes, a state of chaperome hyperconnectivity, or networking, is gained. The role of these chaperome networks is to act as multimolecular scaffolds, a particularly important function in cancer, where they increase the efficacy and functional diversity of several cellular processes. We predict that these concepts will change how we develop and implement drugs targeting the chaperome to treat cancer.


Adaptation, Physiological/physiology , Molecular Chaperones/physiology , Neoplasms , Stress, Physiological/physiology , Humans
10.
Oxid Med Cell Longev ; 2018: 3967213, 2018.
Article En | MEDLINE | ID: mdl-29765495

Marfan syndrome (MFS) cardiovascular manifestations such as aortic aneurysms and cardiomyopathy carry substantial morbidity/mortality. We investigated the effects of lipoic acid, an antioxidant, on ROS production and aortic remodeling in a MFS mgΔloxPneo mouse model. MFS and WT (wild-type) 1-month-old mice were allocated to 3 groups: untreated, treated with losartan, and treated with lipoic acid. At 6 months old, echocardiography, ROS production, and morphological analysis of aortas were performed. Aortic ROS generation in 6-month-old MFS animals was higher at advanced stages of disease in MFS. An unprecedented finding in MFS mice analyzed by OCT was the occurrence of focal inhomogeneous regions in the aortic arch, either collagen-rich extremely thickened or collagen-poor hypotrophic regions. MFS animals treated with lipoic acid showed markedly reduced ROS production and lower ERK1/2 phosphorylation; meanwhile, aortic dilation and elastic fiber breakdown were unaltered. Of note, lipoic acid treatment associated with the absence of focal inhomogeneous regions in MFS animals. Losartan reduced aortic dilation and elastic fiber breakdown despite no change in ROS generation. In conclusion, oxidant generation by itself seems neutral with respect to aneurysm progression in MFS; however, lipoic acid-mediated reduction of inhomogeneous regions may potentially associate with less anisotropy and reduced chance of dissection/rupture.


Aortic Diseases/drug therapy , Marfan Syndrome/drug therapy , Reactive Oxygen Species/metabolism , Animals , Disease Models, Animal , Female , Humans , Mice , Phenotype
11.
Redox Biol ; 12: 1004-1010, 2017 08.
Article En | MEDLINE | ID: mdl-28501017

Extracellular pools of intracellular molecular chaperones are increasingly evident. The peri/epicellular(pec) pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1(PDI) is involved in thrombosis and vascular remodeling, while PDI externalization routes remain elusive. In endothelial cells, vesicular-type PDI secretion involves classical and unconventional pathways, while in platelets PDI exocytosis involves actin cytoskeleton. However, little is known about pecPDI in vascular smooth muscle cells(VSMC). Here, we showed that VSMC display a robust cell-surface(cs) PDI pool, which binds to cs independently of electrostatic forces. However, contrarily to other cells, soluble secreted PDI pool was undetectable in VSMC. Calcium ionophore A23187 and TNFα enhanced VSMC csPDI. Furthermore, VSMC PDI externalization occurred via Golgi-bypass unconventional route, which was independent of cytoskeleton or lysosomes. Secreted PDI was absent in ex vivo wild-type mice aortas but markedly enhanced in PDI-overexpressing mice. Such characterization of VSMC pecPDI reinforces cell-type and context specific routes of PDI externalization.


Golgi Apparatus/enzymology , Muscle, Smooth, Vascular/enzymology , Protein Disulfide-Isomerases/metabolism , Animals , Calcimycin/pharmacology , Cells, Cultured , Golgi Apparatus/drug effects , Mice , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , Rabbits , Tumor Necrosis Factor-alpha/pharmacology
12.
Free Radic Biol Med ; 103: 199-208, 2017 02.
Article En | MEDLINE | ID: mdl-28034831

Extracellular protein disulfide isomerase (PDIA1) pool mediates thrombosis and vascular remodeling, however its externalization mechanisms remain unclear. We performed systematic pharmacological screening of secretory pathways affecting extracellular PDIA1 in endothelial cells (EC). We identified cell-surface (csPDIA1) and secreted non-particulated PDIA1 pools in EC. Such Golgi bypass also occurred for secreted PDIA1 in EC at baseline or after PMA, thrombin or ATP stimulation. Inhibitors of Type I, II and III unconventional routes, secretory lysosomes and recycling endosomes, including syntaxin-12 deletion, did not impair EC PDIA1 externalization. This suggests predominantly Golgi-independent unconventional secretory route(s), which were GRASP55-independent. Also, these data reinforce a vesicular-type traffic for PDIA1. We further showed that PDIA1 traffic is ATP-independent, while actin or tubulin cytoskeletal disruption markedly increased EC PDIA1 secretion. Clathrin inhibition enhanced extracellular soluble PDIA1, suggesting dynamic cycling. Externalized PDIA1 represents <2% of intracellular PDIA1. PDIA1 was robustly secreted by physiological levels of arterial laminar shear in EC and supported alpha 5 integrin thiol oxidation. Such results help clarify signaling and homeostatic mechanisms involved in multiple (patho)physiological extracellular PDIA1 functions.


Human Umbilical Vein Endothelial Cells/enzymology , Procollagen-Proline Dioxygenase/metabolism , Protein Disulfide-Isomerases/metabolism , Biomechanical Phenomena , Cells, Cultured , Golgi Apparatus/enzymology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Integrin alpha5/metabolism , Mechanotransduction, Cellular , Oxidation-Reduction , Protein Transport
13.
Free Radic. Biol. Med. ; 103: 199-208, 2017.
Article En | SES-SP, SESSP-IBPROD, SES-SP | ID: but-ib15478

Extracellular protein disulfide isomerase (PDIA1) pool mediates thrombosis and vascular remodeling, however its externalization mechanisms remain unclear. We performed systematic pharmacological screening of secretory pathways affecting extracellular PDIA1 in endothelial cells (EC). We identified cell-surface (csPDIA1) and secreted non-particulated PDIA1 pools in EC. Such Golgi bypass also occurred for secreted PDIA1 in EC at baseline or after PMA, thrombin or ATP stimulation. Inhibitors of Type I, II and III unconventional routes, secretory lysosomes and recycling endosomes, including syntaxin-12 deletion, did not impair EC PDIA1 externalization This suggests predominantly Golgi-independent unconventional secretory route(s), which were GRASP55-independent. Also, these data reinforce a vesicular-type traffic for PDIA1. We further showed that PDIA1 traffic is ATP-independent, while actin or tubulin cytoskeletal disruption markedly increased EC PDIA1 secretion. Clathrin inhibition enhanced extracellular soluble PDIA1, suggesting dynamic cycling. Externalized PDIA1 represents <2% of intracellular PDIA1. PDIA1 was robustly secreted by physiological levels of arterial laminar shear in EC and supported alpha 5 integrin thiol oxidation. Such results help clarify signaling and homeostatic mechanisms involved in multiple (patho)physiological extracellular PDIA1 functions.

14.
Hypertension ; 67(3): 613-22, 2016 Mar.
Article En | MEDLINE | ID: mdl-26781284

Whole-vessel remodeling critically determines lumen caliber in vascular (patho)physiology, and it is reportedly redox-dependent. We hypothesized that the cell-surface pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1 (peri/epicellular=pecPDI), which is known to support thrombosis, also regulates disease-associated vascular architecture. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling and plaque stability. In a rabbit iliac artery overdistension model, there was unusually high PDI upregulation (≈25-fold versus basal, 14 days postinjury), involving both intracellular and pecPDI. PecPDI neutralization with distinct anti-PDI antibodies did not enhance endoplasmic reticulum stress or apoptosis. In vivo pecPDI neutralization with PDI antibody-containing perivascular gel from days 12 to 14 post injury promoted 25% decrease in the maximally dilated arteriographic vascular caliber. There was corresponding whole-vessel circumference loss using optical coherence tomography without change in neointima, which indicates constrictive remodeling. This was accompanied by decreased hydrogen peroxide generation. Constrictive remodeling was corroborated by marked changes in collagen organization, that is, switching from circumferential to radial fiber orientation and to a more rigid fiber type. The cytoskeleton architecture was also disrupted; there was a loss of stress fiber coherent organization and a switch from thin to medium thickness actin fibers, all leading to impaired viscoelastic ductility. Total and PDI-associated expressions of ß1-integrin, and levels of reduced cell-surface ß1-integrin, were diminished after PDI antibody treatment, implicating ß1-integrin as a likely pecPDI target during vessel repair. Indeed, focal adhesion kinase phosphorylation, a downstream ß1-integrin effector, was decreased by PDI antibody. Thus, the upregulated pecPDI pool tunes matrix/cytoskeleton reshaping to counteract inward remodeling in vascular pathophysiology.


Coronary Stenosis/genetics , Coronary Vessels/pathology , Protein Disulfide-Isomerases/genetics , RNA/genetics , Vascular Remodeling , Animals , Cell Membrane/metabolism , Cells, Cultured , Coronary Stenosis/metabolism , Coronary Stenosis/pathology , Coronary Vessels/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Humans , Male , Phosphorylation , Protein Disulfide-Isomerases/biosynthesis , Rabbits
15.
Int J Biochem Cell Biol ; 71: 81-91, 2016 Feb.
Article En | MEDLINE | ID: mdl-26718974

Fibrillin-1 mutations promote Marfan syndrome (MFS) via complex yet unclear pathways. The roles of endoplasmic reticulum (ER) and the major ER redox chaperone protein disulfide isomerase-A1 in the processing of normal and mutated fibrillin-1 and ensuing protein secretion and/or intracellular retention are unclear. Our results in mouse embryonic fibroblasts bearing the exon-skipping mgΔ(lox-P-neo) (mgΔ(lpn)) mutation, which associates in vivo with MFS and in vitro with disrupted microfibrils, indicate a preserved ER-dependent proteostasis or redox homeostasis. Rather, mutated fibrillin-1 is secreted normally through Golgi-dependent pathways and is not intracellularly retained. Similar results occurred for the C1039G point mutation. In parallel, we provide evidence that PDIA1 physically interacts with fibrillin-1 in the ER. Moreover, siRNA against PDIA1 augmented fibrillin-1 secretion rates in wild-type cells. However, fibrillin-1 with the mgΔ(lpn) mutation bypassed PDI checkpoint delay, while the C1039G mutation did not. This heretofore undisclosed PDIA1-mediated mechanism may be important to control the extracellular availability of function-competent fibrillin-1, an important determinant of disease phenotype. Moreover, our results may reveal a novel, holdase-like, PDI function associated with ER protein quality control.


Homeostasis/genetics , Marfan Syndrome/genetics , Microfilament Proteins/genetics , Mutation , Protein Disulfide-Isomerases/metabolism , Animals , Cell Line , Endoplasmic Reticulum/metabolism , Fibrillin-1 , Fibrillins , Gene Silencing , Mice , Microfibrils/metabolism , Phenotype , Protein Disulfide-Isomerases/deficiency , Protein Disulfide-Isomerases/genetics
16.
In. Kalil Filho, Roberto; Fuster, Valetim; Albuquerque, Cícero Piva de. Medicina cardiovascular reduzindo o impacto das doenças / Cardiovascular medicine reducing the impact of diseases. São Paulo, Atheneu, 2016. p.89-106.
Monography Pt | LILACS | ID: biblio-971530
17.
Biochemistry ; 53(18): 2884-9, 2014 May 13.
Article En | MEDLINE | ID: mdl-24739062

We investigated the folding of the 70 kDa human cytosolic inducible protein (Hsp70) in vitro using high hydrostatic pressure as a denaturing agent. We followed the structural changes in Hsp70 induced by high hydrostatic pressure using tryptophan fluorescence, molecular dynamics, circular dichroism, high-performance liquid chromatography gel filtration, dynamic light scattering, ATPase activity, and chaperone activity. Although monomeric, Hsp70 is very sensitive to hydrostatic pressure; after pressure had been removed, the protein did not return to its native sate but instead formed oligomeric species that lost chaperone activity but retained ATPase activity.


Adenosine Triphosphatases/metabolism , HSP70 Heat-Shock Proteins/metabolism , Hydrostatic Pressure , Molecular Chaperones/metabolism , Protein Conformation , Circular Dichroism , HSP70 Heat-Shock Proteins/chemistry , Humans , Protein Denaturation , Protein Folding
18.
Antioxid Redox Signal ; 20(17): 2755-75, 2014 Jun 10.
Article En | MEDLINE | ID: mdl-24386930

SIGNIFICANCE: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. RECENT ADVANCES: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. CRITICAL ISSUES: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. FUTURE DIRECTIONS: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and the ER may provide relevant insights in Nox-related (patho)physiology.


Endoplasmic Reticulum/enzymology , NADPH Oxidases/metabolism , Oxidative Stress/genetics , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Endoplasmic Reticulum Stress/genetics , Humans , NADPH Oxidases/classification , NADPH Oxidases/genetics , Protein Folding , Reactive Oxygen Species/metabolism , Signal Transduction
...